Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 45(10): 913-920, Oct. 2012. ilus
Article in English | LILACS | ID: lil-647752

ABSTRACT

The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.


Subject(s)
Animals , Cricetinae , Female , Humans , Cytoplasm/metabolism , Gene Products, tat/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Chromatography, Affinity , Cell Differentiation/genetics , Cytoplasm/genetics , Electrophoresis, Polyacrylamide Gel , Genetic Vectors , Gene Products, tat/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Transfection
2.
Genet. mol. res. (Online) ; 4(3): 491-495, 2005. ilus
Article in English | LILACS | ID: lil-444963

ABSTRACT

Gaucher disease, the most common lysosomal storage disorder, is currently treated with enzyme replacement therapy. This approach, however, is ineffective in altering the progression of neurodegeneration in type 2 and type 3 patients due to the difficulty of transferring the recombinant enzyme across the blood-brain barrier. Human immunodeficiency virus type 1 trans-activating transcriptional activator protein (HIV TAT) contains a protein transduction domain that can be added to a fusion protein partner to allow for transport of the partner across membranes. Consequently, we examined the creation, production, and secretion of fusion constructs containing glucocerebrosidase and either wild-type TAT or modified TAT in Sf9 cells. All three constructs exhibited successful expression, with wild-type TAT chimeras showing lower levels of expression than modified TAT chimeras.


Subject(s)
Humans , Glucosylceramidase/biosynthesis , Gene Products, tat/metabolism , Cells, Cultured , Gaucher Disease/metabolism , Gaucher Disease/therapy , Glucosylceramidase/genetics , Cell Line , Cell Membrane/metabolism , Gene Products, tat/genetics , Transcription, Genetic , Transduction, Genetic , Protein Transport/genetics
SELECTION OF CITATIONS
SEARCH DETAIL